

Neurofitter: a parameter tuning package for a wide range of
electrophysiological neuron models

Werner Van Geit
Theoretical Neurobiology, University of Antwerp
Universiteitsplein 1, Antwerp, 2610, BELGIUM
Computational Neuroscience Unit, Okinawa Institute of Science and Technology
7542 Onna, Onna-son, Kunigami, Okinawa, 904-0411, JAPAN
werner@tnb.ua.ac.be

Pablo Achard
Theoretical Neurobiology, University of Antwerp
Universiteitsplein 1, Antwerp, 2610, BELGIUM
Volen Center for Complex System, Brandeis University
415 South Street, Waltham, MA 02454, USA
pablo@tnb.ua.ac.be

Erik De Schutter*
Computational Neuroscience Unit, Okinawa Institute of Science and Technology
7542 Onna, Onna-son, Kunigami, Okinawa, 904-0411, JAPAN
Theoretical Neurobiology, University of Antwerp
Universiteitsplein 1, Antwerp, 2610, BELGIUM
erik@oist.jp

Abstract
The increase in available computational power and the higher quality of experimental recordings have
turned the tuning of neuron model parameters into a problem that can be solved by automatic global
optimization algorithms. Neurofitter is a software tool that interfaces existing neural simulation
software and sophisticated optimization algorithms with a new way to compute the error measure. This
error measure represents how well a given parameter set is able to reproduce the experimental data. It
is based on the phase-plane trajectory density method, which is insensitive to small phase differences
between model and data. Neurofitter enables the effortless combination of many different time-
dependent data traces into the error measure, allowing the neuroscientist to focus on what are the
seminal properties of the model.
We show results obtained by applying Neurofitter to a simple single compartmental model and a
complex multi-compartmental Purkinje cell model. These examples show that the method is able to
solve a variety of tuning problems and demonstrate details of its practical application.

Keywords
parameter tuning, neuron, model, simulator, automatic, optimization algorithms, software,
electrophysiology

1. Introduction

One of the big challenges facing a scientist developing a detailed computational model is how to tune
model parameters that cannot be directly derived from experimental results. This is especially true for
neuroscientists who develop complex models of neurons that consist of many different compartments
(Rall, 1964) incorporating multiple types of voltage-gated ion channels (London and Häusser, 2005)
that all require separate parameters. This problem can become even more complicated when one wants
to model neuronal networks, which can consist of a large number of neurons of different types (De
Schutter et al., 2005). Because of the sharp increase in computational power that is made available to
scientists in the field (Markram, 2006) and because of the increasingly detailed knowledge of neuronal
mechanisms that underlie neuronal function, these models have become more and more complex,
causing an increase in the number of parameters that need to be fitted. In the extreme case there can be
different parameters for each compartment or neuron.
In the ideal situation, the values for every parameter of a model are obtained from the same set of
experimental data (Rall et al., 1992), but unfortunately this is not always possible. First, it can be
difficult to obtain some parameters within an acceptable error margin. For example, reliable kinetic
data for ion channels that generate small currents are hard to extract. A second problem to be avoided
is the “failure of averaging”. Sometimes the parameter space containing the best maximal conductances
for voltage-gated channels is very concave, excluding the mean. So the general practice of calculating
the mean value from experiments on different cells is not guaranteed to provide good values
(Golowasch et al., 2002; De Schutter and Bower, 1994).
Until recently the traditional approach was to tune neuronal model parameters by hand. This requires a
lot of effort and knowledge from the scientist and can be very challenging since the underlying
mechanisms are highly nonlinear and difficult to grasp. It can also induce some bias as the scientist has
a natural tendency to assign in advance different roles to each parameter. However, complicated
models have been successfully developed this way (Traub et al., 1991; De Schutter and Bower, 1994).
Several parameter search methods have been developed over the years to automate the tuning of
neuron models. Three different approaches can be distinguished. First, some methods do a brute force
scan of the entire parameter space (Bhalla and Bower, 1993; Foster et al., 1993; Prinz et al., 2003).
Most methods tune the model by use of Monte Carlo optimization algorithms, including genetic
algorithms and simulated annealing (Bush et al., 2005; Gerken et al., 2006; Schneider et al., 2004;
Weaver and Wearne, 2006; Keren et al., 2005; Vanier and Bower, 1999; Baldi et al., 1998; Achard and
De Schutter, 2006). Finally, recent approaches use mathematical techniques to infer in a more direct
way values for the model parameters (Huys et al., 2006).
Because of international initiatives (Bjaalie and Grillner, 2007), experimentalists are increasingly
sharing their data with modelers, and many modelers make their model simulation codes available in
databases like ModelDB (Hines et al., 2004). This makes it possible for people from both parts of the
field to interact with each other and to generate models that reproduce the available experimental data
as closely as possible.
In this paper we present a command-line software tool for automated parameter searches, called
Neurofitter. The innovative part of Neurofitter is the use of the phase-plane trajectory density method
(LeMasson and Maex, 2001) to measure how faithfully the model can reproduce experimental data.
The users provide the experimental data in the form of time-dependent traces, specify the model code
written for any neuron simulator environment and select an optimization technique from a library of
third-party routines. Subsequently, Neurofitter will run the model with different sets of parameters and
try to find an optimal model based on the target data.

2. Software Description and Methods

2.1. General Algorithm

Neurofitter is aimed to rapidly find the best possible parameter set of a neuron model to replicate given
experimental data. It requires a function that quantifies the goodness of a parameter set. That way,
different parameter sets can be ranked and the best of them selected. The core task performed by
Neurofitter is therefore the computation of an error function that connects every parameter set of a
neuron model with a single value that represents how well these parameters are able to replicate the
experimental data.
The user has to provide both the experimental data and a computational neuron model that can be run
with different parameter sets. All the settings of Neurofitter are defined in an XML file provided to the
software during startup. Figure 1 gives a general overview of the operations performed by Neurofitter,
which are listed in more detail in Appendix A, while Figure 2 provides an overview of the underlying
software structure and its relation to other software packages.

Figure 1: General Algorithm
Short description of the core operations of the algorithm. The left panel contains the steps performed
by Neurofitter; the right panel the actions the user has to implement in the neuron model code.

First, Neurofitter will analyze the experimental data (see section 2.2) and store it in an object
ExperimentInterface so that it can be compared to model traces.
An object ModelInterface is created that provides an interface with the model. This object creates
model output traces contained in DataTrace objects, one for every stimulation protocol, by causing a
simulator to run the user-provided model (see section 2.3) with a set of parameters.
Next, the ModelInterface and ExperimentInterface objects are passed to a ErrorValueCalculator that
creates VdVdtMatrix objects from the model and experiment Datatraces using the phase-plane

trajectory density method (see section 2.6). The ErrorValueCalculator calculates an error value for
each set of parameters, and will store this information in a file.
Finally, the optimization algorithm (see section 2.7) is run using a FitterInterface object.
FitterInterface makes use of ErrorValueCalculator that represents the error function. Neurofitter runs
until a termination criterion of the optimization algorithm is reached and returns the best set of
parameters found.

Figure 2: General structure
Schema describing the most important abstract C++ classes implemented in Neurofitter. An arrow
represents the relationship ‘makes use of’.

2.2. Experimental data format

The experimental data has to consist of time-dependent traces that may have been recorded from
different sites in the neuron, applying different stimulation protocols or recording methods. The user
should be careful when combining data from different experiments or sources (De Schutter and
Steuber, 2000) as no model may be able to fit a disjoint set.
The data is submitted as a set of ASCII files (see Figure 3), which should all have the same sampling
rate. There has to be one file for each separate model run used in the evaluation (corresponding to
different experimental protocols) and for every recording method (e.g. a voltage or a calcium
concentration recording). For a more detailed explanation of the data format used, please refer to
Appendix B.

Figure 3: Experimental data format
The format of the ASCII experimental files is shown (right) with the corresponding data traces (left). If
the experiment consists of a recording at two sites, with two different consecutive injections (current

amplitudes 1 and 3 nA), two files should be created output_Run0.dat and output_Run1.dat, each
containing 1 column with the timestamps and 2 columns with the recorded data (V) in soma and
dendrite. Example was made using the PC model (De Schutter and Bower, 1994).

2.3. Adapting the model code

Neurofitter is able to interface with different neural simulator packages. We have written specialized
interfaces with the GENESIS (Bower and Beeman, 1998) and NEURON (Hines and Carnevale, 1997)
simulators. It is possible to use other software packages to simulate the neuron model, provided the
model can be started up from a shell command. The simulator must read the parameters it has to use
from a file before model execution and write output to another file.
The user has to adapt a model script slightly to enable it to communicate with Neurofitter. The
parameter values that need to be tuned should no longer be defined as constants in the model, but
should be read from a file provided by Neurofitter. Every time the optimization algorithm wants to
evaluate a point in the parameters space, Neurofitter creates a file at a fixed location (which is specified
in the XML settings). This file contains the run parameters (for example amplitude and location of
current injection), the model parameters (e.g. the ion channel maximal conductances) and the name and
location of the file to which the model should write its output. Next the neuron simulator is executed by
a shell command. At this point the model code should read the file that was created by Neurofitter, run
the model and write its output to the correct file location in the same format as the experimental data.
The output trace of the model has to have the same (fixed) sampling rate as the experimental data and
this rate has to be specified in the XML settings file. If Neurofitter is used with the variable time step
methods available in some neuron simulators, care should be taken that output is generated at the fixed
sampling rate.

2.4. Neurofitter settings

The settings for the software are specified in an XML file (Figure 4) that contains sections for each of
the different settings, namely FitterParameters, TraceReaderParameters, ModelParameters,
ExperimentParameters, ErrorValueCalculatorParameters. At present this XML file must be made or
adapted by the user but future versions of Neurofitter will provide a graphical interface to generate the
XML file.
FitterParameters contains the settings for the optimization algorithm, depending strongly on which
algorithm is used, for example with evolutionary algorithm these are the size of the population, the
mutation rate, etc.
ModelParameters contains the settings for the simulation software; these are fields like the location of
the model, the simulation software executable, etc.
ExperimentParameters specifies the location of the files that contain the experimental data. One can
however also use as “experimental” data the output of the model with a pre-specified set of parameters
(Achard and De Schutter, 2006).
The ErrorValueCalculatorParameters settings control the phase-plane trajectory density method. Here
one can change the size and resolution of the 2D histogram. It also specifies the location of the file
containing the error values of the sets of model parameters that have already been evaluated.
The last one is the TracesReaderParameters, containing the settings for the module that reads the
traces generated by the model and compares it to experimental data, and the weights that have to be
given to the different parts of the traces. Here the user can also specify the stimulation protocols, the
time ranges of the traces that have to be taken into account and the number of recording sites.

Figure 4: XML structure
The basic structure of the XML settings file. The root tag can be chosen by the user. A more extended
example can be found in Appendix B.

2.5. Parallelization

Because running complex neuron models can be computationally very expensive, and, as optimization
algorithms always need to evaluate many points in the parameter space, Neurofitter supports running
the software on parallel environments like computer clusters. Neurofitter is able to use the Message
Passing Interface (MPI) (Nagle, 2005) that is commonly in use on cluster computers.
There are different levels of parallelization (Figure 5) that can be used by the software. At the first
level, one can let every separate node in the parallel environment calculate the entire error value of one
set of parameters. This minimizes the network traffic between nodes, since the only values that have to
be exchanged between the master node and the slave CPU nodes are sets of parameters and an error
value. Another possibility is to split the parallelization at the level of the run parameters, this way one
can run different stimulation protocols of the model on different CPU nodes. This only makes sense if
one wants to run the model with a large number of different protocols, and if this number is a multiple
of the number of processor nodes on the computer system. The next level that can be parallelized is
outside Neurofitter’s control; one can parallelize the model itself, with the PGENESIS simulator (De
Schutter and Beeman, 1998) or with NEURON (Migliore et al., 2006). Neurofitter allows the user to
mix the different levels of parallelization if necessary, but this can be very complicated to set up on
some cluster systems as it implies starting MPI jobs from inside other MPI jobs.

Figure 5: Parallelization
The different levels of possible parallelization. (A) All the parallel running slaves receive a set of
model parameters, run the model, calculate the error value using the phase-plane trajectory density
method and return the error value to the master node. (B) The slaves run 1 stimulation protocol using
the model and return the voltage traces to the master. (C) The model is internally parallelized in the
neuron model simulator.

2.6. The error function

Optimization methods aim to find the minimal value of a mathematical / computational function often
called the ‘objective’, ‘fitness’ or ‘error’ function (Eiben and Smith, 2003). This function maps any
parameter set to a real number that measures the distance between the solution and the target data.
Previous research on optimization methods in the field of neurosciences has mostly used heuristic error
functions (Bleeck et al., 2003; Davison et al., 2000; Gerken et al., 2006; Huys et al., 2006; Keren et al.,
2005; Reid et al., 2007; Schneider et al., 2004; Vanier and Bower, 1999; Weaver and Wearne, 2006;
Prinz et al., 2003; Shen et al., 1999; Bush et al., 2005; Druckmann et al., 2007).
We had multiple goals in selecting an error function (not to be confused with the mathematical Gauss
error function ‘erf’ (Abramowitz and Stegun, 1972)). First of all we wanted to be able to combine
smoothly experimental data from different sources like intracellular voltage recordings, local field
potentials, calcium signal traces, etc., possibly recorded from different locations and during different
stimulation protocols. Next, we wanted the method to be insensitive to phase shifts in spike traces (see
section 2.6.2). Finally, the method had also to be easy to use, fast to calculate and to show little
sensitivity to noise in the data. We believe that the phase-plane trajectory density method meets these
conditions.

2.6.1. Phase-plane trajectory density method

The phase-plane trajectory density method (LeMasson and Maex, 2001; Jenerick, 1963; Bean, 2007)
reduces the sensitivity of the error function to phase shifts between traces by eliminating the time
parameter. This is achieved by plotting one time-dependent variable against another time-dependent
variable; in practice usually a measure and its derivative in time. To create a phase-plane trajectory
density plot from a voltage trace recording V(t), Neurofitter makes a 2D (V, dV/dt) plot for all the data
points in a specified time range (Figure 6 B, D). Although specific time, and therefore phase, is
removed, the density plot still constrains several temporal properties of the signal. Periodic signals like
regular spiking will result in a loop with a shape dependent both on the action potential shape and on
the acceleration of the depolarization during the final phase of the interspike interval. The density of

data points in the loop encodes spike frequency. A burst consisting of spikes with different shapes will
result in superimposed trajectories of different sizes (Figure 6 D).

Figure 6: Phase-plane trajectory density plots
(A) Traces recorded from the PC model (De Schutter and Bower, 1994) during constant current
injection of 0.5 nA, causing the model to tonically fire action potentials. (B) V-dV/dt plot
corresponding to the trace in (A), data sampled every 0.02 ms. Grey lines show the bins of the 2D
histogram used by the phase-plane trajectory density method. In every bin the number of plot points is
counted, the counts are then combined in Eq. 1. (C,D) Similar to A and B, except that the model is
injected with a current of 3 nA, causing it to burst. The V-dV/dt plot shows different trajectories
corresponding to different action potential shapes.

Next a two-dimensional histogram is created around the phase-plane plot. When this is done for both
an experimental and a model trace, both traces can easily be compared. The error value can be
computed as the root-mean-square difference between the histograms:

!

e = (
data ij

Ndata

"
modelij

Nmodel

)
2

j=1

Ny

#
i=1

Nx

(1)

with

!

data ij and

!

modelij the number of points in bin (i,j),

!

N
data

 and

!

N
model

 the total number of data
and model points,

!

N
x

 and

!

Ny the number of bins in the histogram. A perfect match results in a zero
error.
In practice we found the optimization algorithm can have difficulties finding an optimal value with this
error definition (see section 3.1). The voltage in a neuron will remain close to the resting potential most
of the time, causing the bin containing this resting value to have a large value, while the other bins
representing the shape of the action potential get very small values. In eq. 1 the difference of these

values to the model are then squared before taking the sum, causing the error value to become very
dependent on the resting potential.
Eq. 1 can be replaced by:

!

e =
data ij

N
data

"
modelij

N
modelj=1

Ny

#
i=1

Nx

#
$

%

&
&

'

(

)
)

2

 (2)

which has the opposite effect of the square root of the square’s sum, namely that the resting potential
effect loses weight. Note however that eq. 2 gives a proportionally higher weight to noise than eq. 1. In
Neurofitter the user has to select one of these two equations.
Figure 9 compares the error landscapes obtained for a simple model using eq. 1 or 2. In this case, eq. 2
is much easier to search by an optimization algorithm as there are less local minima, so it suffices for
the algorithm to follow the gradient of the surface to find a better solution.

2.6.2. Phase shifts

For neural data it is an advantage if the error function is insensitive to small phase shifts or jitter
between the model and data traces. This is very important since the exact timing of spikes is usually
much less reproducible in experimental recordings than the spike shapes (Mainen and Sejnowski, 1995;
Shadlen and Newsome, 1998; Fellous et al., 2001) and it therefore does, in general, not make sense to
try to do a ‘perfect’ fit to a particular trace.
The phase-plane trajectory density method will generate the same V-dV/dt plot for two traces that
show a small phase difference (Figure 7A). Other techniques (Vanier and Bower, 1999) have compared
recorded traces by calculating the mean-square error between the recorded data points:

!

f =
1

N
data i(t) "modeli(t)()

2

i=1

N

(3)

Eq. 3, however, is very sensitive to phase shifts in the data. It can even generate the undesired result
that phase shifts are punished more than the difference between a spiking and a quiescent trace (Figure
7B).
One solution would be to shift the spikes in the model trace so that both peaks coincide. This allows for
comparison of the shape of the action potentials, since a lot of information about the ion channel
conductances is stored in this shape. However this way of comparing traces can become complicated
when one deals with traces with more than one spike: which spikes should be compared? What
happens when the spiking frequencies are different? How to treat bursts with irregular number of
spikes? etc.

Figure 7: Phase difference between spike trains
(A) Plot of a fragment of two spike trains (red and blue) that show a phase difference. On a phase-
plane trajectory density plot these two spike trains would show almost the same shape. (B) The least
square errors (blue trace, Eq. 3) between the two spike trains in (A) show a maximum when the phase

difference is maximal, at that point the values are much higher than the least square errors between the
red trace and the flat green trace (A).

2.6.3. Histogram bin size

An important setting of the method that is not automated is the size of the 2D histogram, which is
determined by both the maximal/minimal values for V and dV/dt and by the resolution. For
experimental data, it is trivial to find the extreme values for V since one possesses all the data, but for
the data produced by the different model parameter sets this is in general not possible before running
the models. Because of the way this matrix is implemented (see section 2.8), these values can be
chosen to be quite broad without using much extra memory to store the matrix, so one can use, for
example, from -300 mV to 300 mV for voltage traces. If some values produced by the model fall
outside these bounds the bins at the borders of the matrix are used to store overflow values. Neurofitter
calculates the boundaries for dV/dt automatically, by using the extreme values of V and the sampling
rate.
The choice of the resolution (i.e. bin size) of the matrix is more difficult and is determined by a trade-
off rule. If a very small bin size is chosen, the probability of finding two data points in the same bin
becomes tiny, which causes two traces with a small difference to have a large error value since all their
data points would be in different histogram bins. But one wants also to avoid the opposite effect,
namely if the resolution is too low (in the extreme case, just 1 bin), a lot of points will be in the same
bin and all traces will have very similar error values. For the problems we studied, we typically used
matrix sizes in the range of 100 by 100 to 500 by 500 bins. When Neurofitter is used with a high
verbose level setting, the software will print the histograms that are used on the standard output, so that
the user can evaluate the size and resolution of the matrix and fine-tune them if necessary. We
recommend that users check the histograms generated from the experimental data to make sure that
these dimensions are set to useful values.

2.6.4. Combining different recordings and time ranges

Often one single experimental trace will not suffice to fit a model, and the scientist wants to combine
different traces from different stimulation protocols, recording sites, etc.
To accomplish this, the error values from the different traces can be combined in a global value E as a
weighted sum:

!

E = wijk " eijk
k=1

N time ranges

#
j=1

Nprotocols

#
i=1

N recordingsites

(3)

with i ranging over the

!

N recordingsites different recording sites, j over the Nprotocols different stimulation

protocols and k over the N time ranges relevant time ranges,

!

eijk the error values of the different traces

calculated according to equations (1) or (2) and

!

wijk the weights of the different traces in the global
error function E.
Time ranges can be specified since eliminating detailed temporal information from the data traces, as is
done in the phase-plane trajectory density function, may sometimes be a disadvantage. For example, if
one simulates a neuron that first spikes and then bursts, a model that produces the opposite sequence,
burst first and then spike, will give good error values. This problem can be overcome by dividing the
traces in different, possibly overlapping, time ranges on which the phase-plane trajectory density
method is applied separately (Figure 8Error! Reference source not found., Figure 13).

Figure 8: Different time ranges
Plot showing the ability of Neurofitter to calculate the phase-plane trajectory density plot for different
time ranges in a trace separately. This enables the user to make a distinction between different firing
patterns inside one trace. Example was made using the PC model (De Schutter and Bower, 1994).

The different error values generated this way, one for each time range, can then be summed afterwards
with possibly different weights (eq. 3). These weights make it possible to assign different levels of
importance to each time range. For example it might be decided that a transitory period at the
beginning of trace does not need to be fit exactly and so it can be given a lower weight. The example
XML settings file in Appendix B shows how these time ranges can be defined.

2.7. Optimization algorithms

By giving an error value to every set of parameters, finding the best set of parameters is reduced to an
optimization problem that can be solved by general global optimization algorithms.
Neurofitter interfaces with third-party optimizations libraries and has also several built-in optimization
algorithms, ranging from very simple methods to the quite complicated particle swarm optimization.
We next give a brief overview of the included algorithms.

2.7.1. Mesh

A multidimensional regular mesh is created in the parameter space (Prinz et al., 2003). The error
function is evaluated at every vertex. No information about the goodness of points previously visited is
exploited. The algorithm allows the user to make a preliminary scan of the solution space or to get
insights in the shape of simple error landscapes. In the case where the model has just 2 parameters it is

easy to make 3D plots of the error function (Figure 9), if there are more parameters users can apply
stacking techniques to visualize higher-dimensional spaces (Taylor et al., 2006). As the number of
points to evaluate increases as a power of the number of free parameters, this algorithm is
unfortunately computationally prohibitive when this number approaches 10.

2.7.2. Random

This method is very similar to the Mesh algorithm, except that the points are chosen at random
according to a uniform distribution in the parameter space. The advantage is that, when calculating
enough points, this method does not create artificial biases in the data caused by the shape of a mesh.
And since the order in which the solution space is searched is random, instead of starting at one corner,
this method is more suited as a reference to compare the speed of different optimization algorithms.

2.7.3. File

When using the FileFitter the user provides Neurofitter with a file containing specific parameter sets
that have to be evaluated. This offers the possibility of exploring some user-defined sets of parameters.

2.7.4. Particle Swarm Optimization

The particle swarm optimization algorithm (PSO) (Kennedy and Eberhart, 1995) imitates the behavior
of flocks of animals that are in search for food or that try to avoid predators. The general concept is that
every particle in the swarm searches for a local minimum in the error function, during which it is
influenced by the best solution found so far by both the particle itself and by other particles to which it
is connected to in the swarm.
Because a large number of variants for particle swarm optimization exist, James Kennedy and Maurice
Clerc have proposed a standard PSO algorithm called PSO 2006 (http://www.particleswarm.info),
which is the version implemented in Neurofitter. This algorithm has a very limited amount of internal
parameters that have to be set as most of these settings are calculated automatically. E.g. the number of

particles in the swarm is the closest integer to 10 + 2* D with D the number of dimensions (i.e.
number of parameters).

2.7.5. Evolution Strategies

Another interesting method is Evolution Strategies (ES) (Rechenberg, 1973; Schwefel, 1975) in which
a process similar to natural selection is used to find an optimal solution. The method is very similar to
genetic algorithms (Holland, 1975) but has as advantage that it is specifically designed for problems
with real numbers instead of integers. As with genetic algorithms one starts with an initial random
population of possible solutions, to which a number of operators are applied, causing subsequent
populations to contain better and better individuals. The operators used in general in ES, are mutation,
crossover and selection. The former lets the parameters change with random values from a Gaussian
distribution, the second averages parameters of several individuals and the latter selects the best
individuals from every generation to survive into the next.

2.7.6. NOMAD

NOMAD (Nonlinear Optimization for Mixed vAriables and Derivatives) (Audet and Orban, 2004) is a
method that, while it is still a global optimization technique, is more specialized in finding local
solutions. It starts with a single point in the search space. Then the algorithm repetitively applies two
steps on the search space, namely a global search and a local poll step. During the search step a mesh is
created in the solution space and the value of the error function is calculated on randomly chosen
crossings all over the mesh. If during this step no better solution than the incumbent solution is found,
the poll step is applied. This consists of a search on the mesh in the space around the incumbent
solution.

2.7.7. Hybrid

Unfortunately, as predicted by the no-free-lunch theorems (Wolpert and Macready, 1997), there exists
no optimization algorithm that is perfect, and it is very difficult to find out which is the best method to

use for a specific problem. However, one can combine different search algorithms by applying them
sequentially (Banga et al., 2003). The idea is to first let one algorithm search in the full parameter
space until it is unable to substantially improve the solution, and then use its best solution as a start for
another algorithm that is faster at finding local solutions. In Neurofitter we have implemented a method
that first uses the Evolution Strategies technique, which is then followed by the NOMAD algorithm
(Achard and De Schutter, submitted).

2.8. Implementation aspects

Neurofitter is written in C++ in such a way that is very readable by users who have some knowledge of
C++. Overall, concepts in Neurofitter are used in a very generic way, so that users can easily add
pieces of code to Neurofitter. In this way other optimization algorithms, file formats, parallelization
methods, etc. can be incorporated into Neurofitter. The settings of all the components that are added
can be read from the Neurofitter XML settings file in a straightforward way.
We have minimized the memory used by Neurofitter by implementing the V-dV/dt histograms in a
data structure called a dictionary. Since these histograms are in general very sparse, it is not very
memory efficient to store all the values in memory arrays, but only to store the non-zero elements,
which can be implemented using a two-dimensional dictionary. As a consequence, users can set the
minimal and maximal values of the matrix quite broadly without incurring a memory penalty.
We realize that the field of optimization techniques is a rapidly evolving field and that many new
optimization methods are being developed. That is why we made it possible for users to use third-party
optimization libraries. Similarly, users are free to use whichever neuron simulator they like. We
provided built-in interfaces to the NEURON (Hines and Carnevale, 1997) and GENESIS (Bower and
Beeman, 1998) simulators but other simulators can easily be used.
Since we expect a very diverse set of users, Neurofitter compiles on as many systems as possible.
Some of the systems we successfully tested Neurofitter on include Mac OS X 10.4 on PPC/Intel
processors, Windows Cygwin, Linux Slackware/Suse, etc. Neurofitter uses MPI for it’s parallelized
version and can be used on most cluster computers, the MPI implementation we tested it on were
OpenMPI, LAM/MPI and MPICH.

2.9. Methods used in the examples

The two example models in the discussion section were simulated with GENESIS 2.2.1 software
(Bower and Beeman, 1998) under Mac OS X 10.4 and SUSE Linux Enterprise Server 10 and run on an
Apple cluster computer using IBM PowerPC G5 and Intel Xeon processors. For the compilation of
Neurofitter, GENESIS, ES and NOMAD the Gnu Compiler Collection (gcc) version 4.0.1 was used.
Data analysis was performed using Matlab 6.5, Igor Pro 5.04b and Gnuplot 4.2.

3. Examples of using Neurofitter

3.1. A bursting pacemaker neuron

Rhythm generation is an important function of the nervous system. The primary kernel for respiratory
rhythm is hypothesized to be located in the pre-Bötzinger complex in mammals (Smith et al., 1991).
The rhythm is generated by a population of excitatory neurons that have intrinsic bursting pacemaker-
like properties. These properties arise from a balance between the different ion channels present in the
cells. We tested the efficiency of Neurofitter in finding the correct balance of the parameters that
generate this bursting behavior by letting it fit a simple single-compartmental model of the pre-
Bötzinger bursting pacemaker neurons described in (Butera et al., 1999). It contains four ionic currents:
a fast (NaF) and a persistent (NaP) Na current, a delayed-rectifier potassium (Kdr) current and a K-
dominated passive leakage current:

!

C
dV

dt
= "I

NaP
" I

NaF
" I

Kdr
" I

Leak
 (4)

To allow for a bursting behavior the model incorporates a slow inactivation of the NaP current with a
time constant of 10 seconds.
This model was a good test case as it has a small number of ionic channels but an electrophysiological
behavior more complex than simple spiking. Two of the four maximal conductances were released,
creating an error function that takes two single values as argument and that could easily be visualized
in a three-dimensional plot (Figure 9A). We fitted the maximal conductances of the NaP and Kdr
channels, since the balance of strengths of these two channels is important to allow the bursting
behavior of the model.

The target traces were these created by the original maximal conductances values used in (Butera et al.,
1999), 2.8 nS for

!

gNaP and 11.2 nS for

!

gKdr . The parameter boundaries imposed on the optimization

algorithms were [0,10] nS for

!

gNaP and [0,50] nS for

!

gKdr . We used a single phase-plane 2D
histogram comprising 3.0 - 4.8 s of the trace shown in Figure 11A.

A mesh in the solution space was explored, by using eq. 1 to calculate the difference between two
matrices, creating the error plot shown in Figure 9A.

 Figure 9: Error landscapes
3D plots of error landscapes created by Mesh searches in the solution space of the pacemaker neuron
model. (A) uses eq. 1 to calculate the error values; (B) uses eq. 2. Remark that the deep blue region in
panel A has become dark red in panel B. The view angle of both plots is chosen differently to allow a
better view of the 3D landscapes. The black arrows indicate the location of the optimal solution. The
red arrow points to the position of a local minimum that created problems for the ES algorithm.

However, optimization algorithms often failed to find a good solution to this error function. This was
because the error function contained a local minimum around the point

!

gNaP ≈ 5 nS and

!

gKdr ≈ 15 nS,

while the best solution was 2.8 nS for

!

gNaP and 11.2 nS for

!

gKdr (Figure 10).

Figure 10: ES search using eq. 1 in the phase-plane trajectory density method
(A) Plot of points in the solution space evaluated by Neurofitter during an Evolutionary Strategies
search (6000 evaluations) to tune the pacemaker model using eq.1 for the phase-plane trajectory
density method. Every red point represents 1 evaluation. ES is not able to escape a deep region (B)
Interpolated plot of the error values calculated by Neurofitter during the ES search in (A). The global
optimal solution with error value 0 is shown by the black and white arrows, but the ES algorithm is not
able to escape a local minimum (red arrow) around

!

gNaP = 5 nS and

!

gKdr= 10-20 nS. Remark that plot
B does not show a complete representation of the error landscape, but only the shape as seen by ES.

Further investigation revealed that this was because the error function using eq. 1, emphasized too
much the resting potential, and less the shape of the action potentials, as described in section 2.6.1.
Using eq. 2 the error landscape became steeper and contained less local optima (Figure 9B), which
made it easier for an optimization algorithm to find a good solution. Running ES and NOMAD
sequentially made it possible in this case to find almost the exact value that was used in the original
paper by making 1000 model evaluations (Figure 11).

Figure 11: Resulting traces
(A) Somatic membrane voltage traces of the target data (red), the best model found by an ES
optimization after 200 (green) and 500 (yellow) evaluations, and by a NOMAD search that started with
the best solution found by ES (blue). The respective error values are 0, 6.7, 4.1 and 2.6. (B) Phase-
plane trajectory of the traces in A (same color code). The density of the trajectory is not visible, since
one location on the plot can contain many overlapping data points.

To benchmark the optimization algorithms, we made a comparison with a complete random search of
the solution space (Figure 12), which shows that, indeed, the more advanced optimization algorithms
were faster in finding a good solution.
The XML settings file used for this example can be found in Appendix B.

Figure 12: ES / NOMAD evolution of pacemaker neuron model
(A) Evolution of best error value found by Random (red) and hybrid ES+NOMAD (blue) searches.
The data points (mean ± sdv) are averaged over 10 different runs of the algorithms using different
random seeds. After 500 error evaluations Neurofitter switched from ES to NOMAD. (B) The
evolution of the best maximal NaP and Kdr channel conductances during the same 10 runs as in A for
the hybrid ES+NOMAD algorithm. The dashed line shows the maximal conductance of the target data.
Not the entire range of the y-axis is shown to allow a better scaling of the plot.

3.2. A complex multi-compartmental neuron

The Purkinje cell (PC) model described in (De Schutter and Bower, 1994) is a very complex model
consisting of 1600 compartments and 4 zones with different channel densities. The model shows a very
broad range of possible activities (tonic firing, bursting, etc). Therefore it has a large amount of
parameters that have to be fit before it can reproduce the available experimental data. This makes it
very difficult to hand-tune this model and it is quite appropriate to use automatic optimization
techniques. Results of this approach have been described in (Achard and De Schutter, 2006). A total of
24 of maximal conductance parameters were released (Table 1), and current clamp experiments using
different injection amplitudes were simulated. While we tried to use reasonably wide bounds for all
conductances in these parameter searches (Table 1), preliminary tests showed that the bounds for the
two channels controlling somatic spiking (fast sodium and delayed rectifier potassium) had to be quite
constrained for the ES to work rapidly in this example.

Table 1
The 24 maximal conductance parameters of the PC model that were tuned in Neurofitter. Values are in
S/m2.

This study made extensive use of the ability of Neurofitter to split up data traces and to combine
different phase-plane plots to generate one error function. To incorporate different behaviors of the
Purkinje cell, currents of different amplitudes were injected in both soma and dendrites (Figure 13).
Traces were obtained during 5 somatic current injections of 0.5 nA, 1 nA, 1.5 nA, 2.5 nA and 3 nA; 1
dendritic current injection of 1.5 nA; and without any injected current to include the quiescence at rest
(De Schutter and Bower, 1994). The model was run sequentially for different current amplitudes,
creating 7 different output files. The duration of recording was different for the each injected current: it
was short for the silent or tonically firing traces in order to optimize the computation time and longer
for bursting traces in order to have enough points in the error 2D histogram.
Since ion channel parameters were fitted in the soma and the dendrites it was important to have
recording sites in both locations (Figure 13). These were weighted so that soma and dendrite had equal
influence on the error measure. In order to have an experimentally realistic protocol, the dendritic
recording sites were only located on smooth dendrites. Every recorded file from the model therefore
contained four columns, one column with the timestamps, one column with data recorded from the
soma and two from the dendrites.
After the start of a current injection one can expect a transitory regime that stabilizes after some time.
To separate these two periods, every trace was evaluated twice using the time range feature of
Neurofitter (Figure 13, section 2.6.4). The transitory period was defined as the period from 100 to 200
ms after the start of the experiment and the stable period as from 1s after the start of current injection
until the end of the recording.

Figure 13: PC Model traces
All the traces recorded from the original PC model that were used to find new parameters. Every
column represents a different recording site, every row a different current injection (somatic injection
unless otherwise mentioned) and the dashed lines show the boundaries of the 2 different time ranges. In
total there are 42 trace fragments for which separate phase-plane trajectory plots are calculated. The
traces with no current injection have a slightly different time range. For the other current injection
amplitudes the time range ends at the end of the recording.

The combination of all these recordings created 7 x 3 x 2 parts of traces that were compared separately
using the phase-plane trajectory density method with eq. 1 and Nx = Ny =100.
Combining all the measures with different weights

!

wijk a total error value could be calculated:

!

E = wijk " eijk
k=1

2

#
j=1

3

#
i=1

7

(5)

with i iterating over the injection amplitudes, j over the recording sites and k over the time ranges;

!

wijk
1 for somatic recordings and 0.5 for dendritic recordings, except when no current was injected, then
they were respectively 0.6 and 0.3
As optimization algorithm the ES technique was used to fit the parameters, the evolution of the error
values during the algorithm is shown in Figure 14.
Subsequent analysis showed that a hybrid approach (section 2.7.7) substantially improved the error of
the solutions found compared to ES alone (Achard and De Schutter, submitted).

Figure 14: Error evolution PC model
Error evolution during the optimization process of the PC model. Mean error value ± standard
deviation in every generation is in red. The error value of the best individual is in green.

4. Discussion

As the results show, Neurofitter finds model parameter sets that nicely reproduce predefined target
voltage traces, with minimal effort from the user. For a very simple model (Butera et al., 1999) with
only two released parameters, Neurofitter finds one almost perfect solution, but for a more complicated
model of the cerebellar Purkinje cell (De Schutter and Bower, 1994) the method has shown that the
different sets of parameters can generate data traces that show very similar behavior (Achard and De
Schutter, 2006). These two examples were chosen because we knew in advance that a good solution
exists and, therefore, any problems in fitting would be due to the error measure or optimization method
used. Of course Neurofitter also needs to be shown capable of fitting models to real experimental data,
but this is more complex to analyze as the quality of the neuron model used will determine the ultimate
success. Preliminary efforts in fitting experimental traces
(http://icwww.epfl.ch/~gerstner/QuantNeuronMod2007/challenge.html) have been very encouraging
and this is a topic of active research by the authors.
One of the big advantages of Neurofitter lies in its use of the phase-plane trajectory density method. In
our experience it is a very efficient method to evaluate time series data traces and it has the desirable
property of being insensitive to jitter and phase shifts in the data (Druckmann et al., 2007). This error
measure is entirely heuristic and it is difficult to predict a priori a reasonable threshold to distinguish
good from bad models (Achard and De Schutter 2006). The use of eq. 2, which introduces a very sharp
gradient for small errors and a low gradient for large errors, is also unusual but it worked quite well for
different fitting problems we have investigated. A limitation of the phase-plane trajectory density
method is that it only provides information about size of error if the model and data traces overlap. If
there is no such overlap the maximal error will be computed, independent of the distance between the
traces in 2D space. However, this is unlikely to occur if the error measure combines several phase-
planes (eq. 5), and it will never cause problems if enough parameter sets are randomly generated at
early stages of the optimization.
Previously described automated model parameter search methods differ from Neurofitter on two
separate aspects: the optimization method used and the implementation of the error function. Some
methods (Goldman et al., 2001; Prinz et al., 2003) use an error function that focuses on quantitative
aspects that are important for physiological function and are therefore also insensitive to phase shifts in
the data. Typical properties include the firing behavior (silent, spiking, bursting,...), resting potentials,
spiking frequencies, spike heights, spike widths, bursting frequencies, number of spikes per burst, etc.
These properties are measured from the data and compared to similar measurements from the model to
calculate the error. We have previously shown that our method achieves the same accuracy as these
approaches (Achard and De Schutter, 2006, Supplementary data). This approach requires criteria to
consistently define spikes, bursts, "regularly spiking", etc. It necessitates the use of spike detection or
even spike sorting methods (Lewicki, 1998) to analyze the traces, and, as these methods are at best
semi-automated, extra effort from the user will be required. An advantage of these approaches is that
the model will not be fitted to data from a single cell but to a statistical distribution reflecting the
underlying variability (Marder and Goaillard, 2006). It also makes it easier to give more weight to
specific characteristics, like spike width (Druckmann et al., 2007). But even in intracellular recordings
the reliability of automated spike isolation methods is not always guaranteed (Blanche and Swindale,
2006; Paulin, 1992; Moon, 1996). If one wants to reproduce not only the simple spiking activity of a
cell or a network, but also its subthreshold behavior, the spikelets of the bursts, the transmission of
post-synaptic potentials, etc., it becomes increasingly difficult to automatically quantify these different
properties. Moreover, the more complex the analysis required, the more subjective and user-dependent
it will become since the criteria that have to be used are not clearly defined. Conversely, the phase-
plane trajectory density method used by Neurofitter is very transparent and requires only a few control
parameters, allowing the user to focus on the selection of relevant data traces to determine the seminal
properties of the model. While we have until now only included data from one cell or neuron in the
error measure it is, in principle, possible to combine data from different neurons of a similar type if one
wants to generate a ‘generic’ model.
Another advantage of using Neurofitter is that the user can exploit the large knowledgebase that exists
in the field of optimization techniques. Very advanced methods have been invented in this field, and by
using Neurofitter one can apply many of these techniques to tune neuronal models, including
evolutionary strategies (Keijzer et al., 2001), particle swarm optimization (Kennedy and Eberhart,
1995) and MADS (Audet and Orban, 2004). Especially the ES technique has been shown to be able to
handle high dimensional problems with a lot of local minima (Achard and De Schutter, 2006; Banga et
al., 2003). Global optimization techniques, that try to find the best global minimum of the error
function will perform better than local optimization techniques, since the error space created by the

parameter of neuron models is apparently filled with local minima and flat area’s (Goldman et al.,
2001; Achard and De Schutter, 2006). So methods that are based on optimization algorithms like the
conjugate gradient method (Vanier and Bower, 1999) will have difficulties finding good solutions.
Other parameter search methods (Prinz et al., 2003; Goldman et al., 2001; Bhalla and Bower, 1993)
explore the solution space using brute-force methods by evaluating the model on all the points of a
uniform higher-dimensional mesh. This is reasonable when the number of parameters that need to be
fitted remains low, but since the amount of points that needs to be evaluated increases as a power of the
number of dimensions, this becomes computationally very expensive for complex models.
The method proposed by Huys et al. (2006) is an interesting alternative, because it does not apply the
traditional stochastic search methods to tune neuron models, but follows a more direct mathematical
approach by turning the fitting problem into a non-negative regression problem. However its main
disadvantage is that for large cells it requires voltage recording at many positions in the neuron, which
strongly limits the data sets that can be used for this method since at present the only technique
available would be voltage-sensitive dye imaging studies.
In this paper the use of current clamp voltage data is emphasized, but this is in no sense a prerequisite
to use Neurofitter. Users can easily use it for other applications. As long as the experimental data
consists of one or more time-dependent traces to which the phase-plane matrix method can be applied,
Neurofitter can be used. Possible alternatives are traces of calcium concentration signals inside a cell,
data from voltage clamp experiments, etc. It has recently been suggested that extracellular recordings
of action potentials can provide useful additional constraints to fitting a model (Gold et al., 2006) and
it is relatively straightforward to incorporate such data into phase-plane trajectory density matrices. It
should also be possible to apply Neurofitter to other problems than fitting the maximum conductances
of channels. For example, instead of using a fixed morphology, one may want to tune the morphology
itself to generate particular electrophysiological properties (Stiefel and Sejnowski, 2007; Mainen and
Sejnowski, 1996). Another possibility is fitting of network parameters, including connection strengths
between neurons, network topologies, etc. This will require careful evaluation of the required
experimental data, especially if one wants to achieve specified levels of synchronization in the network
(Brown et al., 2004).
Neurofitter will hopefully stimulate both modelers and experimentalists to share their data to create
better models (Ascoli, 2006; Kennedy, 2006), and will make it easier for neuroscientists to create
detailed neuron models based on experimental data. Neurofitter is designed to be an evolving software
package. We are continuing to explore ways to enhance it, both by improving the search methods used
and by making the program easier to use. As Neurofitter is licensed under GPL license, it can be
modified and extended by its users.

Downloading the software
Neurofitter can be freely downloaded from http://neurofitter.sourceforge.net.

Appendix A: Algorithm

Using Neurofitter involves the following steps:

(1) The user adapts the model so that it can interact with Neurofitter
(2) The user adapts the experimental data to the appropriate format
(3) The user generates an XML file containing the settings of Neurofitter
(4) The user executes the Neurofitter binary

(5) Neurofitter reads the experimental data and generates the experimental phase-plane trajectory

density matrices
(6) Neurofitter starts the optimization algorithm

(7) The optimization algorithm returns a first set of model parameters that have to be evaluated

(8) For every "run" parameter (e.g. amplitude of injected current)

(8.1) Neurofitter writes a file ‘param.dat’ in the model directory containing the model
parameters

(8.2) Neurofitter writes the "run" parameter (e.g. current amplitude) in ‘param.dat’
(8.3) Neurofitter writes in ‘param.dat’ a string containing the location of where it expects the

simulator to write the output data
(8.4) Neurofitter runs the external neuron simulator
(8.5) The simulator reads the model parameters from ‘param.dat’
(8.6) The simulator reads the run parameter from ‘param.dat’
(8.7) The simulator reads the requested output file location from ‘param.dat’
(8.8) The simulator runs the model
(8.9) The simulator writes out the data to the requested location
(8.10) Neurofitter reads the output of the simulator
(8.11) Neurofitter cuts out the relevant time periods in the data and generates phase-plane

trajectory density matrices
(8.12) Neurofitter calculates the error value for this run by comparing with the experimental V

phase-plane trajectory density matrices

(9) Neurofitter calculates the weighted sum of the error values of all the different runs
(10) Neurofitter writes the error value of the parameters in the Neurofitter output file
(11) Neurofitter gives back the error value of the model parameter set to the optimization algorithm

(12) The optimization algorithm searches for a new parameter set to evaluate
(13) Neurofitter returns to step (8) until a termination criterion is reached

(14) The user reads all the evaluated model parameter sets with their error value from the Neurofitter

output file.

Appendix B: File formats used by Neurofitter

Data traces file format

The first column of every file contains the time stamps, and in subsequent columns the data recorded
from the different recording sites (Figure 3). The sampling rate of all the files should be the same.
The data (both the experimental data and the model output) has to be stored using filenames that have
as format ‘output_Run0.dat’, ‘output_Run1.dat’, etc. The user can choose the text string before the
underscore by setting the value of the OutputFilePrefix option in the Neurofitter XML settings file
(section below). The format of the text after the underscore is fixed; it should be ‘Run0.dat’,
‘Run1.dat’, ‘Run2.dat’, etc. for the files containing the data that will be compared with stimulation
protocols 0, 1, 2, etc.

XML settings file

An example of a Neurofitter settings file. It is similar to the one used for the model in section 3.1, but
for demonstration purposes some settings in this file are different. All words between <!-- and --
> are comments, and are not processed by Neurofitter.

<ButeraModel>
 <!-- Number of parameters to be tuned -->
 <Dimensions>2</Dimensions>

 <!-- Verbose level; values from 0 to 5; the higher the more output -->
 <!-- will be written to standard output -->
 <VerboseLevel>4</VerboseLevel>

 <!-- Seed of the random number generator to be used during -->

<!-- the algorithm -->
 <Seed>1550</Seed>

 <!-- The sampling frequency of the data traces, units should be -->
 <!-- the same as in the TracesReader settings -->
 <SamplingFrequency>5000</SamplingFrequency>

 <!-- The starting point of the optimization algorithm -->
 <StartingPoints>
 1.0 1.0
 </StartingPoints>

 <!-- The lower and upper bound of each parameter -->

<Bounds>
 1.0 10000.0 <!-- LowerBound UpperBound -->
 1.0 50000.0
 </Bounds>

 <!-- Path of directory were Neurofitter will be executed -->
 <WorkingDirectory>/home/buteratest</WorkingDirectory>

 <!-- Print settings file to stdout before execution ? -->

<!-- 1 = True / 0 = False -->
 <PrintParameterFile>1</PrintParameterFile>

<!-- Selection of the optimization algorithm -->
<!-- Possible values are: -->
<!-- Mesh, Random, File, Swarm, EO, NOMAD, EONOMAD -->
<FitterType>EO</FitterType>

<!-- Settings of the optimization algorithm -->
<FitterParameters>
 <popSize>22</popSize> <!-- Number of individuals in population -->

 <nbOffspring>200</nbOffspring> <!-- Number of offspring -->
 <replacement>Plus</replacement> <!-- Replacement strategy -->
 <maxGen>5000</maxGen> <!-- Maximal number of generations -->
 <minGen>0</minGen> <!-- Minimal number of generations -->
 <maxEval>30000</maxEval> <!-- Maximal number of evaluation -->
 <targetFitness>0.0</targetFitness> <!-- Target fitness below -->

<!-- which ES stops -->
 <steadyGen>1000</steadyGen> <!-- Maximal number of generations -->
 <!-- without improvement -->
 <crossType>global</crossType> <!-- number of parents for -->

<!-- cross-over (global or local) -->
 <crossObj>intermediate</crossObj> <!-- type of cross-over -->
 <TauLoc>1</TauLoc> <!-- internal parameter for self-evolution -->
 <TauGlob>1</TauGlob> <!-- internal parameter for self-evolution -->
 <Beta>0.0873</Beta> <!-- internal parameter for self-evolution -->
 </FitterParameters>

<!-- Settings of object that reads the data traces -->
<!-- Only 1 type at the moment: Normal -->
<TracesReaderType>Normal</TracesReaderType>

 <TracesReaderParameters>
 <!-- Number of stimulation protocols -->
 <NumberOfRuns>1</NumberOfRuns>
 <!-- Number of settings (like injection amplitude) -->

<!-- per stimulation protocol -->
 <NumberOfRunParameters>1</NumberOfRunParameters>

 <!-- Values for the run parameters -->

<RunParameters>
 0.0 1.0 <!-- RunPar1 RunPar2 ... Weight -->
 </RunParameters>

 <!-- Number of different time ranges -->
 <NumberOfPeriods>3</NumberOfPeriods>
 <!-- Selection of time ranges, 1 line per period -->
 <!-- Units the same as the sampling frequency setting -->
 <Periods>
 2.0 3.9 0.33 <!-- PeriodStart PeriodStop Weight -->
 1.0 1.5 0.33
 0.5 0.75 0.33
 </Periods>

 <!-- Number of different recording sites -->
 <NumberOfRecordSites>1</NumberOfRecordSites>
 <!-- One line for the weight of every recording site -->
 <RecordSites>
 1 <!-- Weights -->
 </RecordSites>

 <!-- The prefix used in the filenames of the experimental -->
 <!-- and model data,

<!-- e.g. filename of the data of the first run = -->
<!-- output_Run0.dat -->

 <OutputFilePrefix>output</OutputFilePrefix>
 </TracesReaderParameters>

 <!-- The type of simulator used to run the model -->
 <!-- Possible values: Genesis, Neuron, Executable -->
 <ModelType>Genesis</ModelType>
 <!-- Settings for the simulator interface -->

<ModelParameters>
 <!-- The Genesis binary location -->

<GenesisLocation>/usr/local/bin/genesis</GenesisLocation>

<!-- Directory containing the model files -->
<ModelDirectory>/home/buteratest/model</ModelDirectory>
<!-- Directory that will contain the model output files -->
<OutputDirectory>/home/buteratest/model/output</OutputDirectory>
<!-- Genesis model file that starts the simulation -->

 <ModelSource>/home/buteratest/model/buteramodel.g</ModelSource>
<!-- File written by Neurofitter that contains the model and -->
<!-- run parameters. This file should be read by the model -->
<ParameterFile>/UseterWork/wernermodel/param.dat</ParameterFile>
<!-- Show the genesis stdout during execution, useful for -->
<!-- debugging -->

 <ShowExecuteOutput>0</ShowExecuteOutput>
 </ModelParameters>

 <!-- Type of experimental data -->
 <!-- Possible values are:

<!-- File: data read from file -->
<!-- Fake: ‘experimental’ data is obtained by running -->
<!-- the model with a preset set of parameters -->

 <ExperimentType>Fake</ExperimentType>
 <ExperimentParameters>
 <Parameters>2800.0 11200.0</Parameters>
 </ExperimentParameters>

 <!-- Type of error function used -->
 <!-- Only 1 possible value: Matrix -->
 <ErrorValueCalculatorType>Matrix</ErrorValueCalculatorType>
 <!-- Settings of the error function -->

<ErrorValueCalculatorParameters>
 <!-- Type of V-dV/dt matrix used -->
 <!-- Only 1 possible value: Direct -->

 <VdVdtMatrixType>Direct</VdVdtMatrixType>
 <VdVdtMatrixParameters>
 <!-- Numbers of bins in the V direction of the matrix -->
 <vLength>100</vLength>

<!-- Numbers of bins in the V direction of the matrix -->
 <dVdtLength>100</dVdtLength>
 <!-- Minimal value of V -->
 <minimalV>-0.1</minimalV>
 <!-- Maximal value of V -->
 <maximalV>0.05</maximalV>
 <!-- Values below comparePrecision are supposed to -->

<!-- be equal -->
 <comparePrecision>1e-15</comparePrecision>
 <!-- Show the matrix on standard output with numeric -->

<!-- values; 1 = True, 0 = False -->
 <numericOutputFormat>0</numericOutputFormat>
 <!-- Way of calculating the difference between matrices -->
 <!-- 0 = Calculate the sum of the squares -->
 <!-- 1 = Calculate the sum of the square roots -->
 <SumOfSquareRoots>0</SumOfSquareRoots>

</VdVdtMatrixParameters>
<!-- Enable export of the calculated error values to a file -->

 <!-- 1 = True, 0 = False -->
<enableFileExport>1</enableFileExport>
<!-- Name of the file to store the error values to -->

 <exportFile>ErrorValues.dat</exportFile>
</ErrorValueCalculatorParameters

</ButeraModel>

Acknowledgments
WVG is funded as an FWO research assistant. This work was supported by grants from BOF (UA),
FWO Flanders and HFSPO and OIST.

Conflict-of-Interest Statement
The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

References

- Abramowitz, M, Stegun, I.A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables (New York: Dover).

- Achard, P., and De Schutter, E. (2006). Complex parameter landscape for a complex neuron
model. PLoS Comput Biol 2, e94.

- Ascoli, G. (2006). The ups and downs of neuroscience shares. NeuroInformatics 4, 213-15.
- Audet, C., and Orban, D. (2004). Finding optimal algorithmic parameters using a mesh

adaptive direct search. Cahiers du GERAD G-2004-xx
- Baldi, P., Vanier, M.C., and Bower, J.M. (1998). On the use of Bayesian methods for

evaluating compartmental neural models. J Comput Neurosci 5, 285-314.
- Banga, J.R., Moles, C.G., and Alonso, A.A. (2003). Global optimization of bioprocesses using

stochastic and hybrid methods. In Frontiers In Global Optimization, C.A. Floudas and P. M.
Pardalos, (Eds.), Nonconvex Optimization and Its Applications (Kluwer Academic
Publishers).

- Bean, B.P. (2007). The action potential in mammalian central neurons. Nat Rev Neurosci 8,
451-465.

- Bhalla, U.S., and Bower, J.M. (1993). Exploring parameter space in detailed single neuron
models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69,
1948-965.

- Bjaalie, J.G., and Grillner, S. (2007). Global neuroinformatics: the International
Neuroinformatics Coordinating Facility. J Neurosci 27, 3613-15.

- Blanche, T.J., and Swindale, N.V. (2006). Nyquist interpolation improves neuron yield in
multiunit recordings. J Neurosci Methods 155, 81-91.

- Bleeck, S., Patterson, R.D., and Winter, I.M. (2003). Using genetic algorithms to find the
most effective stimulus for sensory neurons. J Neurosci Methods 125, 73-82.

- Bower, J.M., and Beeman, D. (1998). The book of GENESIS (2nd ed.): exploring realistic
neural models with the GEneral NEural SImulation System (Springer-Verlag New York, Inc.).

- Brown, E.N., Kass, R.E., and Mitra, P.P. (2004). Multiple neural spike train data analysis:
state-of-the-art and future challenges. Nat Neurosci 7, 456-461.

- Bush, K., Knight, J., and Anderson, C. (2005). Optimizing conductance parameters of cortical
neural models via electrotonic partitions. Neural Netw 18, 488-496.

- Butera, R.J., Rinzel, J., and Smith, J.C. (1999). Models of respiratory rhythm generation in the
pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82, 382-397.

- Davison, A.P., Feng, J., and Brown, D. (2000). A reduced compartmental model of the mitral
cell for use in network models of the olfactory bulb. Brain Res Bull 51, 393-99.

- De Schutter, E., and Beeman, D. (1998). Speeding up GENESIS simulations. In The Book of
GENESIS Exploring Realistic Neural Models with the GEneral NEural SImulation System
(Berlin: Springer).

- De Schutter, E., and Bower, J.M. (1994). An active membrane model of the cerebellar
Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71, 375-400.

- De Schutter, E., and Steuber, V. (2000). Modeling of neurons with active dendrites. In
Computational Neuroscience: Realistic Modeling for Experimentalists, E. De Schutter, eds.
(Boca Raton: CRC Press).

- De Schutter, E., Ekeberg, O., Kotaleski, J.H., Achard, P., and Lansner, A. (2005).
Biophysically detailed modelling of microcircuits and beyond. Trends Neurosci 28, 562-69.

- Druckmann, S., Banitt, Y., Gidon, A., Schuermann, F., Markram, H., Segev, I. (2007). A
novel multiple objective optimization framework for constraining conductance-based neuron
models by experimental data. Frontiers in Neuroscience 1.

- Eiben, A.E., and Smith, J.E. (2003). Introduction to Evolutionary Computing
(SpringerVerlag).

- Fellous, J.M., Houweling, A.R., Modi, R.H., Rao, R.P., Tiesinga, P.H., and Sejnowski, T.J.
(2001). Frequency dependence of spike timing reliability in cortical pyramidal cells and
interneurons. J Neurophysiol 85, 1782-87.

- Forrest, S. and Mitchell, M. (1993). What makes a problem hard for a genetic algorithm?
Some anomalous results and their explanation. Machine Learning 13, 285-319.

- Foster, W.R., Ungar, L.H., and Schwaber, J.S. (1993). Significance of conductances in
Hodgkin-Huxley models. J Neurophysiol 70, 2502-518.

- Gerken, W.C., Purvis, L.K., and Butera, R.J. (2006). Genetic algorithm for optimization and
specification of a neuron model. Neurocomputing 69, 1039-042.

- Gold, C., Henze, D.A., Koch, C., and Buzsáki, G. (2006). On the origin of the extracellular
action potential waveform: A modeling study. J Neurophysiol 95, 3113-128.

- Goldman, M.S., Golowasch, J., Marder, E., and Abbott, L.F. (2001). Global structure,
robustness, and modulation of neuronal models. J Neurosci 21, 5229-238.

- Golowasch, J., Goldman, M.S., Abbott, L.F., and Marder, E. (2002). Failure of averaging in
the construction of a conductance-based neuron model. J Neurophysiol 87, 1129-131.

- Hines, M.L., and Carnevale, N.T. (1997). The NEURON simulation environment. Neural
Comput 9, 1179-1209.

- Hines, M.L., Morse, T., Migliore, M., Carnevale, N.T., and Shepherd, G.M. (2004).
ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17, 7-11.

- Holland, J.H. (1975). Adaptation in natural and artificial systems : an introductory analysis
with applications to biology, control, and artificial intelligence (Ann Arbor: University of
Michigan Press).

- Huys, Q.J., Ahrens, M.B., and Paninski, L. (2006). Efficient estimation of detailed single-
neuron models. J Neurophysiol 96, 872-890.

- Jenerick, H. (1963). Phase plane trajectories of the muscle spike potential. Biophys J 3, 363-
377.

- Keijzer, M..., Merelo, J.J..., Romero, G..., and Schoenauer, M... (2001). Evolving Objects: A
general purpose evolutionary computation library. In Artificial Evolution: 5th International
Conference, Evolution Artificielle, EA 2001, Le Creusot (France: Berlin: Springer-Verlag).

- Kennedy, D. (2006). Where's the beef? missing data in the information age. NeuroInformatics
4, 271-73.

- Kennedy, J., and Eberhart, R.C. (1995). Particle Swarm Optimization. Proceedings of the
IEEE International Joint Conference on Neural Networks , 1942-48.

- Keren, N., Peled, N., and Korngreen, A. (2005). Constraining compartmental models using
multiple voltage recordings and genetic algorithms. J Neurophysiol 94, 3730-742.

- LeMasson, and Maex (2001). Introduction to equation solving and parameter fitting. In
Computational neuroscience: Realistic modeling for experimentalists (Londen : CRC Press).

- Lewicki, M.S. (1998). A review of methods for spike sorting: the detection and classification
of neural action potentials. Network 9, R53-R78.

- London, M., and Häusser, M. (2005). Dendritic computation. Annu Rev Neurosci 28, 503-
532.

- Mainen, Z.F., and Sejnowski, T.J. (1995). Reliability of spike timing in neocortical neurons.
Science 268, 1503-06.

- Mainen, Z.F., and Sejnowski, T.J. (1996). Influence of dendritic structure on firing pattern in
model neocortical neurons. Nature 382, 363-66.

- Marder, E., and Goaillard, J.M. (2006). Variability, compensation and homeostasis in neuron
and network function. Nat Rev Neurosci 7, 563-574.

- Markram, H. (2006). The blue brain project. Nat Rev Neurosci 7, 153-160.
- Migliore, M., Cannia, C., Lytton, W.W., Markram, H., and Hines, M.L. (2006). Parallel

network simulations with NEURON. J Comput Neurosci 21, 119-129.
- Moon, B.R. (1996). Sampling rates, aliasing, and the analysis of electrophysiological signals.

Biomedical Engineering Conference, 1996 , Proceedings of the 1996 Fifteenth Southern
Biomedical Engineering Conference, 1996., Proceedings of the 1996 Fifteenth Southern
Sampling rates, aliasing, and the analysis of electrophysiological signals , 401-04.

- Nagle, D. (2005). MPI -- The Complete Reference, Vol. 1, The MPI Core, 2nd ed., Scientific
and Engineering Computation Series, by Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker and Jack Dongarra. Sci. Program. 13, 57-63.

- Paulin, M.G. (1992). Digital filters for firing rate estimation. Biol Cybern 66, 525-531.
- Prinz, A.A., Billimoria, C.P., and Marder, E. (2003). Alternative to hand-tuning conductance-

based models: construction and analysis of databases of model neurons. J Neurophysiol 90,
3998-4015.

- Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input–output
relations. In Neural theory and modeling, R.F. Reiss, eds. (Stanford, California: Stanford
University Press).

- Rall, W., Burke, R.E., Holmes, W.R., Jack, J.J., Redman, S.J., and Segev, I. (1992). Matching
dendritic neuron models to experimental data. Physiol Rev 72, S159-186.

- Rechenberg, I. (1973). Evolutionsstrategie: optimierung technischer systeme nach prinzipien
der biologischen evolution (Stuttgart, Germany: Frommann-Holzboog).

- Reid, M.S., Brown, E.A., and DeWeerth, S.P. (2007). A parameter-space search algorithm
tested on a Hodgkin-Huxley model. Biol Cybern 96, 625-634.

- Schneider, S., Igel, C., Klaes, C., Dinse, H.R., and Wiemer, J.C. (2004). Evolutionary
Adaptation of Nonlinear Dynamical Systems in Computational Neuroscience. Genetic
Programming and Evolvable Machines 5, 215-227.

- Schwefel, H.P. (1975). Evolutionsstrategie und numerische optimierung. PhD Thesis
- Shadlen, M.N., and Newsome, W.T. (1998). The variable discharge of cortical neurons:

implications for connectivity, computation, and information coding. J Neurosci 18, 3870-896.
- Shen, G.Y., Chen, W.R., Midtgaard, J., Shepherd, G.M., and Hines, M.L. (1999).

Computational analysis of action potential initiation in mitral cell soma and dendrites based
on dual patch recordings. J Neurophysiol 82, 3006-020.

- Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., and Feldman, J.L. (1991). Pre-
Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals.
Science 254, 726-29.

- Stiefel, K.M., and Sejnowski, T.J. (2007). Mapping function onto neuronal morphology. J
Neurophysiol 98, 513-526.

- Taylor, A.L., Hickey, T.J., Prinz, A.A., and Marder, E. (2006). Structure and visualization of
high-dimensional conductance spaces. J Neurophysiol 96, 891-905.

- Traub, R.D., Wong, R.K., Miles, R., and Michelson, H. (1991). A model of a CA3
hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J
Neurophysiol 66, 635-650.

- Vanier, M.C., and Bower, J.M. (1999). A comparative survey of automated parameter-search
methods for compartmental neural models. J Comput Neurosci 7, 149-171.

- Weaver, C.M., and Wearne, S.L. (2006). The role of action potential shape and parameter
constraints in optimization of compartment models. Neurocomputing 69, 1053-57.

- Wolpert, D.H., and Macready, W.G. (1997). No Free Lunch Theorems for Optimization.
IEEE Transactions on Evolutionary Computation 1, 67-82.

